Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2017, Vol. 14 Issue (3): 387-398    DOI: 10.1007/s11770-017-0636-7
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
An amplitude suppression method based on the decibel criterion
Kong Xuan-Lin1,2, Chen Hui1,3, Wang Jin-Long2, Hu Zhi-Quan2, Xu Dan1,3, and Li Lu-Ming1
1. Chengdu University of Technology, Chengdu 610059, China.
2. Exploration and Production Research Institute, Sinopec Southwest Company, Chengdu 610041, China.
3. Geomathematics Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu 610059, China.
 Download: PDF (1748 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract To suppress the strong noise in seismic data with wide range of amplitudes, commonly used methods often yield unsatisfactory denoising results owing to inappropriate thresholds and require parametric testing as well as iterations to achieve the anticipated results. To overcome these problems, a data-driven strong amplitude suppression method based on the decibel criterion in the wavelet domain (ISANA) is proposed. The method determines the denoising threshold based on the decibel criterion and statistically analyzes the amplitude index rather than the abnormally high amplitudes. The method distinguishes the frequency band distributions of the valid signals in the time–frequency domain based on the wavelet transformation and then calculates thresholds in selected time windows, eventually achieving frequency-divided noise attenuation for better denoising. Simulations based on theoretical and real-world data verify the adaptability and low dependence of the method on the size of the time window. The method suppresses noise without energy loss in the signals.
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
Articles by authors
Key wordswavelet transformation   amplitude   decibel criterion   denoising     
Received: 2016-11-15;

This work was supported by the National Science and Technology Major Project (No. 2011ZX05002-004-002), the National Natural Science Foundation of China (No. 41304111), Key Project of Science and Technology Department of Sichuan Province (No. 2016JY0200), Natural Science project of Education Department of Sichuan Province (Nos. 16ZB0101 and 14ZA0061), the Sichuan Provincial Youth Science & Technology Innovative Research Group Fund (No. 2016TD0023), and the Cultivating Program of Excellent Innovation Team of Chengdu University of Technology (No. KYTD201410).

Cite this article:   
. An amplitude suppression method based on the decibel criterion[J]. APPLIED GEOPHYSICS, 2017, 14(3): 387-398.
[1] Anderson, R. G., and Mcmechan, G. A., 1989, Automatic editing of noisy seismic data: Geophysical Prospecting, 37(8), 875-892.
[2] Bekara, M., and Bann, M. V. D., 2009, Random and coherent noise attenuation by empirical mode decomposition: Geophysics, 74(5), V89-V98.
[3] Cai, X. L., 1999, An effective method to suppress acoustic wave and high energy noise frequency-divisionally and adaptively: Oil Geophysical Prospecting, 34(4), 373-380.
[4] Cai, X. L., and Lu, Y. M., 2005, Time-frequency analysis and frequency-divisional processing of seismic data: Progress in Exploration Geophysics, 28(4), 265-270.
[5] Elboth, T., Geoteam, F., Qaisrani, H. H., et al., 2008, De-noising seismic data in the time-frequency domain: SEG Technical Program Expanded Abstracts, 9-14 November, Las Vegas, Nevada, USA, 2622-2626.
[6] Gao, J. H., Wang, W. B., Zhu, G. M., et al., 1996, On the choice of wavelet functions for seismic data processing: Chinese Journal of Geophysics, 39(03), 392-400.
[7] Gao, W., and Liu, H. S., 2013, Strong noise attenuation method based on the multiuser kurtosis criterion: Applied Geophysics, 10(1), 25-32.
[8] Goswami, J. C., and Chan, A. K., 2011, Fundamentals of wavelets: theory, algorithms, and applications: John Wiley & Sons.
[9] Linville, A. F., and Meek, R. A., 1995, A procedure for optimally removing localized coherent noise: Geophysics, 60(1), 191-203.
[10] Niu, H., 2013, Application of frequency-dependent amplitude attenuation method to suppress strong-energy noise in offshore seismic data: Geophysical Prospecting for Petroleum, 52(4), 394-401.
[11] Pan, J., Luan, X. W., Liu, H., et al., 2016, Application of anomalous amplitude noise attenuation in seismic data processingof multichannel survey: Progress in Geophysics, 31(4), 1639-1645.
[12] Wang, D. X., Wang, Y. G., Zhao, Y. H., et al., 2016, A strong seismic reflection amplitude suppressing method applied in the Ordos Basin: SEG International Geophysical Conference, 20-22 April, Beijing, China, 389-391.
[13] Wang, J., Zhou, X. Y., and Yun, C. H., 2011, Under the restriction of surface consistent anomaly amplitude decay technology implementation: Geophysical Prospecting for Petroleum, 50(5), 493-498.
[14] Wang, S. Q., Meng, X. H., Yu, C. L., et al., 2006, Seismic abnormal amplitude self-adapting inhibition: Petroleum Geology & Oilfield Development in Daqing, 25(5), 112-115.
[15] Yilmaz, Ö., 2001, Seismic data analysis: Processing, inversion, and interpretation of seismic data: Society of exploration geophysicists.
[16] Zhang, J. H., 2011, The method of seismic data denosing: China University Of Petroleum Press House, China.
[1] Ji Zhan-Huai, Yan Sheng-Gang. Properties of an improved Gabor wavelet transform and its applications to seismic signal processing and interpretation[J]. APPLIED GEOPHYSICS, 2017, 14(4): 529-542.
[2] Zhang Hua, Chen Xiao-Hong, Zhang Luo-Yi. 3D simultaneous seismic data reconstruction and noise suppression based on the curvelet transform[J]. APPLIED GEOPHYSICS, 2017, 14(1): 87-95.
[3] Wang Wan-Li, Yang Wu-Yang, Wei Xin-Jian, He Xin. Ground roll wave suppression based on wavelet frequency division and radial trace transform[J]. APPLIED GEOPHYSICS, 2017, 14(1): 96-104.
[4] Xu Xiao-Hong, Qu Guang-Zhong, Zhang Yang, Bi Yun-Yun, Wang Jin-Ju. Ground-roll separation of seismic data based on morphological component analysis in two-dimensional domain[J]. APPLIED GEOPHYSICS, 2016, 13(1): 116-126.
[5] Song Li-Rong, Yu Chang-Qing, Li Gui-Hua, Feng Yang-Yang, He Jun-Jie. Characteristics of gravity anomalies and prediction of volcanosedimentary boron deposit distribution in the Xiongba area, Tibet[J]. APPLIED GEOPHYSICS, 2015, 12(4): 516-522.
[6] Liu Qiang, Han Li-Guo, Chen Jing-Yi, Chen Xue, Zhang Xian-Na. Separation of inhomogeneous blended seismic data[J]. APPLIED GEOPHYSICS, 2015, 12(3): 327-333.
[7] Ge Zi-Jian, Li Jing-Ye, Pan Shu-Lin, Chen Xiao-Hong. A fast-convergence POCS seismic denoising and reconstruction method[J]. APPLIED GEOPHYSICS, 2015, 12(2): 169-178.
[8] GAO Wei, LIU Huai-Shan. Strong noise attenuation method based on the multiuser kurtosis criterion[J]. APPLIED GEOPHYSICS, 2013, 10(1): 25-32.
[9] LONG Yun, HAN Li-Guo, HAN Li, TAN Chen-Qing. L1 norm optimal solution match processing in the wavelet domain[J]. APPLIED GEOPHYSICS, 2012, 9(4): 451-458.
[10] TANG Gang, MA Jian-Wei, YANG Hui-Zhu. Seismic data denoising based on learning-type overcomplete dictionaries*[J]. APPLIED GEOPHYSICS, 2012, 9(1): 27-32.
[11] ZHANG Xiao-Feng, PAN Bao-Zhi, WANG Fei, HAN Xue. A study of wavelet transforms applied for fracture identifi cation and fracture density evaluation[J]. APPLIED GEOPHYSICS, 2011, 8(2): 164-169.
[12] ZHENG Jing-Jing, YIN Xing-Yao, ZHANG Guang-Zhi, WU Guo-Hu, ZHANG Zuo-Sheng. The surface wave suppression using the second generation curvelet transform[J]. APPLIED GEOPHYSICS, 2010, 7(4): 325-335.
[13] WANG Jun, CHEN Yu-Hong, XU Da-Hua, QIAO Yu-Lei. Structure-oriented edge-preserving smoothing based on accurate estimation of orientation and edges[J]. APPLIED GEOPHYSICS, 2009, 6(4): 337-346.
Support by Beijing Magtech