Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2017, Vol. 14 Issue (3): 407-418    DOI: 10.1007/s11770-017-0630-0
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Reflection full-waveform inversion using a modified phase misfit function
Cui Chao1,2, Huang Jian-Ping1,2, Li Zhen-Chun1,2, Liao Wen-Yuan3, and Guan Zhe4
1. School of Geosciences, China University of Petroleum (East China), Qingdao 266580, China.
2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
3. Department of Mathematics and Statistics, University of Calgary, Alberta, Canada T2N1N4.
4. Department of Earth Science, Rice University, Houston, Texas, 77005, Unite States.
 Download: PDF (962 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Reflection full-waveform inversion (RFWI) updates the low- and high-wavenumber components, and yields more accurate initial models compared with conventional full-waveform inversion (FWI). However, there is strong nonlinearity in conventional RFWI because of the lack of low-frequency data and the complexity of the amplitude. The separation of phase and amplitude information makes RFWI more linear. Traditional phase-calculation methods face severe phase wrapping. To solve this problem, we propose a modified phase-calculation method that uses the phase-envelope data to obtain the pseudo phase information. Then, we establish a pseudophase-information-based objective function for RFWI, with the corresponding source and gradient terms. Numerical tests verify that the proposed calculation method using the phase-envelope data guarantees the stability and accuracy of the phase information and the convergence of the objective function. The application on a portion of the Sigsbee2A model and comparison with inversion results of the improved RFWI and conventional FWI methods verify that the pseudophase-based RFWI produces a highly accurate and efficient velocity model. Moreover, the proposed method is robust to noise and high frequency.
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
Articles by authors
Key wordsReflection full-waveform inversion   full-waveform inversion   misfit function     
Received: 2016-11-15;

This work was jointly supported by the NSF (Nos. 41104069 and 41274124), the National 973 Project (No. 2014CB239006) and National Oil and Gas Project (Nos. 2016ZX05014001and 2016ZX05002), and the Tai Shan Science Foundation for The Excellent Youth Scholars.

Cite this article:   
. Reflection full-waveform inversion using a modified phase misfit function[J]. APPLIED GEOPHYSICS, 2017, 14(3): 407-418.
[1] Alan, R. L., 1988, Fourth-order finite-difference P-SV seismograms: Geophysics, 53(11), 1425−1436.
[2] Bozda?, E., Trampert, J., and Tromp, J., 2011, Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements: Geophys. J. Int., 185(2), 845−870.
[3] Bunks, C., Saleck, F. M., Zaleski, S., et al., 1995, Multiscale seismic waveform inversion: Geophysics, 60(5), 1457−1473.
[4] Chi, B., Dong, L., and Liu, Y., 2015, Correlation-based reflection full-waveform inversion: Geophysics, 80(4), 189−202.
[5] Choi, Y., and Alkhalifah, T., 2011, Frequency-domain waveform inversion using the unwrapped phase: 81th Annual International Meeting, SEG, Expanded Abstracts, 2576−2580.
[6] Choi, Y., and Alkhalifah, T., 2013, Frequency-domain waveform inversion using the phase derivative: Geophys. J. Int., 195(3), 1904−1916.
[7] Choi, Y., and Alkhalifah, T., 2015, Unwrapped phase inversion with an exponential damping: Geophysics, 80(5), 251−264.
[8] Di, N. C., Shipp, E. R. and Singh, S., 1999, Fast traveltime tomography and analysis of real data using semi-automated picking procedure: 69th Annual International Meeting, SEG, Expanded Abstracts, 1414−1417.
[9] Dong, L. G., Chi, B. X., Tao, J. X., et al., 2013, Objective function behavior in acoustic full-waveform inversion: Chinese Journal Geophysics, 56(10), 3445−3460.
[10] Fichtner, A., Kennett, B. L. N., Igel, H., et al., 2008, Theoretical background for continental- and global-scale full-waveform inversion in the time-frequency domain: Geophys. J. Int., 175(2), 665−685.
[11] Fichtner, A., and Trampert, J., 2011, Hessian kernels of seismic data functionals based upon adjoint techniques: Geophys. J. Int., 185(2), 775−798.
[12] Hale, D., 2013, Dynamic wraping of seismic images: Geophysics, 78(2), S105−S115.
[13] Huang, C., Dong, L. G., and Chi, B. X., 2015, Elastic envelope inversion using multicomponent seismic data with filtered-out low frequency: Applied Geophysics, 12(3), 362−377.
[14] Huang, J. P., Yang, Y., Li, Z. C., et al., 2014, Comparative study among implementations of several free-surface boundaries with perfectly matched layer conditions: Acta Seismologica Sinica, 36(5), 964−977.
[15] Luo, J. R., and Wu, R. S., 2015, Seismic envelope inversion: reduction of local minima and noise resistance: Geophysical Prospecting, 63(3), 597−614.
[16] Luo, J. R., Wu, R. S., and Gao, F. C., 2016, Time-domain full-waveform inversion using instantaneous phase with damping: 86th Annual International Meeting, SEG, Expanded Abstracts, 1472−1476.
[17] Ma, Y., and Hale, D., 2013, Wave-equation reflection traveltime inversion with dynamic wraping and full-waveform inversion: Geophysics, 78(6), R223−R233.
[18] Mora, P., 1989, Inversion = migration + tomography: Geophysics, 54(12), 1575−1586.
[19] Plessix, R. É., 2006, A review of the adjoint-state method for computing the gradient of a functional with geophysical applications: Geophys. J. Int., 167(2), 495−503.
[20] Plessix, R. É., 2013, A pseudo-time formulation for acoustic full waveform inversion: Geophys. J. Int., 192(2), 613−630.
[21] Pratt, R. G., 1999, Seismic waveform inversion in the frequency domain--Part 1: Theory and verification in a physical scale model: Geophysics, 64(3), 888−901.
[22] Shin, C., and Min, D. J., 2006, Waveform inversion using a logarithmic wavefield: Geophysics, 71(3), R31−R42.
[23] Snieder, R., Xie, M. Y., Pica, A., et al., 1989, Retrieving both the impedance contrast and background velocity: A global strategy for the seismic reflection problem: Geophysics, 54(8), 991−1000.
[24] Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation: Geophysics, 49(8), 1259-1266.
[25] Tejero, J. C. E., Dagnino, D., Sallares, V., et al., 2015, Comparative study of objective functions to overcome noise and bandwidth limitations in full waveform inversion: Geophys. J. Int., 203(1), 632−645.
[26] Virieux, J., and Operto, S., 2009, An overview of full-waveform inversion in exploration geophysics: Geophysics, 74(6), WCC1−WCC26.
[27] Wang, H., Singh, S. C., Audebert, F., et al., 2015, Inversion of seismic refraction and reflection data for building long-wavelength velocity models: Geophysics, 80(2), 81−93.
[28] Wu, R. S., Luo, J., and Wu, B., 2014, Seismic envelope inversion and modulation signal model: Geophysics, 79(3), WA13−WA24.
[29] Xu, S., Wang, D., Chen, F., et al., 2012, Inversion on reflected seismic wave: 82nd Annual International Meeting, SEG, Expanded Abstracts, 1−7.
[30] Zhou, W., Brossier, R., Operto, S., et al., 2015, Full waveform inversion of diving & reflected waves for velocity model building with impedance inversion based on scale separation: Geophys. J. Int., 202(3), 1535−1554.
No Similar of article
Support by Beijing Magtech