APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2018, Vol. 15 Issue (1): 78-90    DOI: 10.1007/s11770-018-0663-z
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Acoustic parameters inversion and sediment properties in the Yellow River reservoir
Li Chang-Zheng1, Yang Yong1, Wang Rui1, and Yan Xiao-Fei1
1.The Yellow River Institute of Hydraulic Research, Zhengzhou 450003, China.
 Download: PDF (1272 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract The physical properties of silt in river reservoirs are important to river dynamics. Unfortunately, traditional techniques yield insufficient data. Based on porous media acoustic theory, we invert the acoustic parameters for the top river-bottom sediments. An explicit form of the acoustic reflection coefficient at the water–sediment interface is derived based on Biot’s theory. The choice of parameters in the Biot model is discussed and the relation between acoustic and geological parameters is studied, including that between the reflection coefficient and porosity and the attenuation coefficient and permeability. The attenuation coefficient of the sound wave in the sediments is obtained by analyzing the shift of the signal frequency. The acoustic reflection coefficient at the water–sediment interface is extracted from the sonar signal. Thus, an inversion method of the physical parameters of the river-bottom surface sediments is proposed. The results of an experiment at the Sanmenxia reservoir suggest that the estimated grain size is close to the actual data. This demonstrates the ability of the proposed method to determine the physical parameters of sediments and estimate the grain size.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Key wordsalluvial sediments   porous media   reflection coefficient   attenuation coefficient   acoustic inversion     
Received: 2017-02-17;
Fund:

This work was supported by the National Key R&D Program of China (Grant No.2016YFC0401608), the Scientific Fund of the Yellow River Institute for Hydraulic Research (Grant Nos. HKY-JBYW-2016-09 and HKY-JBYW-2016-29).

Cite this article:   
. Acoustic parameters inversion and sediment properties in the Yellow River reservoir[J]. APPLIED GEOPHYSICS, 2018, 15(1): 78-90.
 
[1] Bachman, R. T., 1985, Acoustic and physical property relationships in marine sediment: The Journal of the Acoustical Society of America, 78(2), 616−621.
[2] Biot, M. A.,1956a, Theory of propagation of elastic waves in a fluid−saturated porous solid. I. Low−frequency range: The Journal of the Acoustical Society of America, 28(2),168−178.
[3] Biot, M. A.,1956b, Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range: The Journal of the Acoustical Society of America, 28(2), 179−191.
[4] Bowles, F. A.,1997, Observations on attenuation and shear-wave velocity in fine-grained, marine sediments:The Journal of the Acoustical Society of America, 101(6), 3385−3397.
[5] Chiu, L. Y. S., Chang, A., Lin, Y. T., and Liu, C. S.,2015,Estimating geoacoustic properties of surficial sediments in the North Mien-Hua Canyon region with a chirp sonar profiler: IEEE Journal of Oceanic Engineering, 40(1), 222−236.
[6] Cui, Z. W., Wang, K. X., Cao, Z. L., and Hu, H. S.,2005, Slow waves propagation in BISQ poroelastic model: ACTA PHYSICA SINICA, 53(9), 3083−3089.
[7] Goff, J. A., Kraft, B. J., Mayer, L. A., et al,2004,Seabed characterization on the New Jersey middle and outer shelf: correlatability and spatial variability of seafloor sediment properties: Marine Geology, 209(1), 147−172.Hamilton, E. L., Bucker, H. P., Keir, D. L., Whitney, J. A., 1970, Velocities of compressional and shear waves in marine sediments determined in situ from a research submersible: Journal of Geophysical Research, 75(20), 4039−4049.
[8] Hovem, J. M., and Ingram, G. D., 1979,Viscous attenuation of sound in saturated sand: The Journal of the Acoustical Society of America, 66(6), 1807−1812.
[9] Jannsen, D., Voss, J., and Theilen, F.,1985,Comparison of methods to determine Q in shallow sediments from vertical reflection seismograms: Geophysical Prospecting, 33(4), 479−497.
[10] Kibblewhite, A. C.,1989, Attenuation of sound in marine sediments: A review with emphasis on new low−frequency data: The Journal of the Acoustical Society of America, 86(2), 716−738.
[11] Kuc, R., 1984, Estimating acoustic attenuation from reflected ultrasound signals: comparison of spectral-shift and spectral-difference approaches: IEEE Transactions on Acoustics, Speech, and Signal Processing, 32(1), 1−6.
[12] Leblanc, L. R., Panda, S., and Schock, S. G.,1992,Sonar attenuation modeling for classification of marine sediments: The Journal of the Acoustical Society of America, 91(1),116−126.
[13] Li, Z. L., and Zhang, R. H., 2004, A broadband geoacoustic inversion scheme: Chinese Physics Letters, 21(6), 1100−1103.
[14] Miller, J. H., Bartek, L. R., Potty, G. R., et al, 2004, Sediments in the East China sea: IEEE Journal of Oceanic Engineering, 29(4), 940−951.
[15] Schock, S. G.,2004, A method for estimating the physical and acoustic properties of the sea bed using chirp sonar data: IEEE Journal of Oceanic Engineering, 29(4), 1200−1217.
[16] Stoll, R. D., and Kan, T. K., 1981, Reflection of acoustic waves at a water-sediment interface: The Journal of the Acoustical Society of America, 70(1), 149−156.
[17] Tarif, P., and Bourbie, T., 1987, Experimental comparison between spectral ratio and rise time techniques for attenuation measurement: Geophysical Prospecting, 35(6), 668−680.
[18] Theuillon, G., Stéphan, Y., and Pacault, A., 2008, High-resolution geoacoustic characterization of the seafloor using a subbottom profiler in the Gulf of Lion: IEEE Journal of Oceanic Engineering, 33(3), 240−254.
[19] Turgut, A., and Yamamoto, T., 1990, Measurements of acoustic wave velocities and attenuation in marine sediments: The Journal of the Acoustical Society of America, 87(6), 2376−2383.
[20] Wang, D., Zhang, H. L., and Wang, X. M., 2006, A numerical study of acoustic wave propagation in partially saturated poroelastic rock: Chinese Journal of Geophysics, 49(2),524−532.
[21] Williams, K. L., 2001, An effective density fluid model for acoustic propagation in sediments derived from Biot theory: The Journal of the Acoustical Society of America, 110(5), 2276−2281.
[22] Williams, K. L., Jackson, D. R., Thorsos, E. I., et al., 2002,Comparison of sound speed and attenuation measured in a sandy sediment to predictions based on the Biot theory of porous media: IEEE Journal of Oceanic Engineering, 27(3), 413−428.
[23] Yamamoto, T., Trevorrow, M. V., Badiey, M., Turgut, A., 1989, Determination of the seabed porosity and shear modulus profiles using a gravity wave inversion: Geophysical Journal International, 98(1), 173−182.
[24] Yang, K. D., and Ma, Y. L., 2009, A geoacoustic inversion method based on bottom reflection signals: Acta Physica Sinica, 58(3), 1798−1805.
[25] Yu, S. Q.,Huang, Y. W., and Qu, Q., 2014, Bottom parameters inversion based on reflection model of effective density fluid approximation: ACTA ACUSTICA, 39(4), 417−427.
[26] Zhang, H. X.,and He, B. S. 2015, Propagation and attenuation of P-waves in patchy saturated porous media: Applied Geophysics, 12(3), 401−408.
[27] Zhu, Z. Y.,Wang, D.,Zhou, J. P.,and Wang, X. M., 2012, Acoustic wave dispersion and attenuation in marine sediment based on partially gas-saturated Biot-Stoll model: Chinese Journal of Geophysics , 55(1), 180−188.
[1] . Inversion of river-bottom sediment parameters using mechanically sampled specimens and subbottom profiling data[J]. APPLIED GEOPHYSICS, 2017, 14(2): 225-235.
[2] Yan Shou-Guo, Xie Fu-Li, Li Chang-Zheng, Zhang Bi-Xing. Dispersion function of Rayleigh waves in porous layered half-space system[J]. APPLIED GEOPHYSICS, 2016, 13(2): 332-342.
[3] Zhang Xing-Yan, Pan Dong-Ming, Shi Wen-Ying, Fang Zhong-Yu, Dan Zhi-Wei, Zhang Li-Xia. Deghosting towed streamer data in τ/p domain based on rough sea surface reflectivity[J]. APPLIED GEOPHYSICS, 2015, 12(4): 573-584.
[4] Zhang Hui-Xing, He Bing-Shou. Propagation and attenuation of P-waves in patchy saturated porous media[J]. APPLIED GEOPHYSICS, 2015, 12(3): 401-408.
[5] FENG Fei, WANG De-Li, ZHU Heng, CHENG Hao. Estimating primaries by sparse inversion of the 3D Curvelet transform and the L1-norm constraint[J]. APPLIED GEOPHYSICS, 2013, 10(2): 201-209.
[6] WANG Pu, HU Tian-Yue. AVO approximation for PS-wave and its application in PP/PS joint inversion[J]. APPLIED GEOPHYSICS, 2011, 8(3): 189-196.
[7] TIAN Ying-Chun, MA Jian-Wei, YANG Hui-Zhu. Wavefield simulation in porous media saturated with two immiscible fluids[J]. APPLIED GEOPHYSICS, 2010, 6(1): 57-65.
[8] TIAN Ying-Chun, MA Jian-Wei, YANG Hui-Zhu. Wavefield simulation in porous media saturated with two immiscible fluids[J]. APPLIED GEOPHYSICS, 2010, 7(1): 57-65.
[9] NIU Bin-Hua, SUN Chun-Yan, YAN Guo-Ying, YANG Wei, LIU Chang. Linear numerical calculation method for obtaining critical point, pore fluid, and framework parameters of gas-bearing media[J]. APPLIED GEOPHYSICS, 2009, 6(4): 319-326.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn