Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2018, Vol. 15 Issue (1): 111-117    DOI: 10.1007/s11770-018-0658-9
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Ground roll attenuation based on an empirical curvelet transform
Yuan Huan1, Hu Zi-Duo1, Liu Zhao2, and Ma Jian-Wei2
1. Research Institute of Petroleum Exploration and Development-Northwest, Petrochina, Lanzhou, 730020, China.
2. Center of Geophysics and Department of Mathematics, Harbin Institute of Technology, Harbin, 150001, China.
 Download: PDF (965 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract In the field of seismic exploration, ground roll seriously affects the deep effective reflections from subsurface deep structures. Traditional curvelet transform cannot provide an adaptive basis function to achieve a suboptimal denoised result. In this paper, we propose a method based on empirical curvelet transform (ECT) for ground roll attenuation. Unlike the traditional curvelet transform, this method not only decomposes seismic data into multiscale and multi-directional components, but also provides an adaptive filter bank according to frequency content of seismic data itself. So, ground roll can be separated by using this method. However, as the frequency of reflection and ground roll components are close, we apply singular value decomposition (SVD) in the curvelet domain to differentiate the ground roll and reflection better. Examples of synthetic and field seismic data reveal that the proposed method based ECT performs better than the traditional curvelet method in terms of the suppression of ground roll.
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
Articles by authors
Key wordsGround roll attenuation   empirical curvelet transform   singular value decomposition     
Received: 2017-09-09;

The work was supported in part by the National Key Research and Development Program of China (No. 2017YFB0202900) and the National Natural Science Foundation of China (Nos. 41625017, 41374121, and  91730306).

Cite this article:   
. Ground roll attenuation based on an empirical curvelet transform[J]. APPLIED GEOPHYSICS, 2018, 15(1): 111-117.
[1] Boustani, B., Torabi, S., Javaherian, A., et al., 2013, Ground roll attenuation using a curvelet-SVD filter: a case study from the west of Iran: Journal of Geophysics and Engineering, 10(5), 055006.
[2] Candès, E. J., and Donoho, D. L., 2005, Continuous curvelet transform: ii. discretization and frames: Applied and Computational Harmonic Analysis, 19(2), 198−222.
[3] Candès, E. J., Demanet, L., Donoho, D., et al., 2006, Fast discrete curvelet transforms: Multiscale Modeling & Simulation, 5(3), 861−899.
[4] Cary, P. W., and Zhang, C., 2009, Ground roll attenuation with adaptive eigenimage filtering:2009 SEG Annual Meeting, 3302−3306.
[5] Chen, W. C., Gao, J. H., and Bao, Q. Z., 2009, Adaptive surface wave suppression method based on continuous wavelet transform: Chinese Journal of Geophysics (in Chinese), 52(11), 2854−2861.
[6] Deighan, A. J., and Watts, D. R., 1997, Ground-roll suppression using the wavelet transform: Geophysics, 62(6), 1896−1903.
[7] Embree, P., Burg, J. P., and Backus, M. M., 1963, Wide-band velocity filtering—The pie-slice process: Geophysics, 28(6), 948−974.
[8] Geli?li, K., and Karsli, H., 1998, F-k filtering using the Hartley transform: Journal of Seismic Exploration, 7(2), 101−107.
[9] Gilles, J., Tran, G., and Osher, S., 2014, 2D empirical transforms. wavelets, ridgelets and curvelets: SIAM Journal on Imaging Sciences, 7(7), 157−186.
[10] Herrmann, F. J., Wang, D., Hennenfent, G., et al., 2007, Curvelet-based seismic data processing: a multiscale and nonlinear approach: Geophysics, 73(1), A1−A5.
[11] Karsli, H., and Bayrak, Y., 2004, Using the Wiener-Levinson algorithm to suppress ground-roll: Journal of Applied Geophysics, 55(3), 187−197.
[12] Ma, J., and Plonka, G., 2010, The curvelet transform: IEEE Signal Processing Magazine, 27(2), 118−133.
[13] Oliveira, M. S., Henriques, M. V. C., Leite, F. E. A., et al., 2012, Seismic denoising using curvelet analysis: Physica A Statistical Mechanics &Its Applications, 391(5), 2106−2110.
[14] Treitel, S., Shanks, J. L., and Frasier, C. W., 1967, Some aspects of fan filtering, Geophysics, 32(5), 789−800.
[15] Wang, W. L., Yang, W. Y., Wei, X. J., et al. 2017, Ground roll wave suppression based on wavelet frequency division and radial trace transform: Applied Geophysics, 14(1), 96−104.
[16] Welford, J. K., and Zhang, R., 2004, Ground-roll suppression from deep crustal seismic reflection data using a wavelet-based approach: A case study from western Canada: Geophysics, 69(4), 877−884.
[17] Xu, P., 1998, Truncated SVD methods for discrete linear ill-posed problems: Geophysical Journal International, 135(2), 505−514.
[18] Yarham, C. U., Boeniger, and Herrmann, F., 2006, Curvelet-based ground roll removal:SEG Technical Program Expanded Abstracts 2006, 2777−2882.
[19] Yilmaz, Ö., 2001, Seismic data analysis: processing, inversion, and interpretation of seismic data:Society of Exploration Geophysicists Press, United States of Ameica, 74170−2740 .
[20] Zheng, J. J., Yin, X. Y., Zhang, G. Z., et al., 2010, The surface wave suppression using the second generation curvelet transform: Applied Geophysics, 7(4), 325−335.
[1] Kong Xuan-Lin, Chen Hui, Hu Zhi-Quan, Kang Jia-Xing, Xu Tian-Ji, Li Lu-Ming. Surface wave attenuation based polarization attributes in time-frequency domain for multicomponent seismic data[J]. APPLIED GEOPHYSICS, 2018, 15(1): 99-110.
[2] Wang De-Ying, Ling Yun. Phase-shift- and phase-filtering-based surface-wave suppression method[J]. APPLIED GEOPHYSICS, 2016, 13(4): 614-620.
[3] Xu Xiao-Hong, Qu Guang-Zhong, Zhang Yang, Bi Yun-Yun, Wang Jin-Ju. Ground-roll separation of seismic data based on morphological component analysis in two-dimensional domain[J]. APPLIED GEOPHYSICS, 2016, 13(1): 116-126.
[4] YU Chuan-Tao, LIU Hong-Fu, ZHANG Xin-Jun, YANG De-Yi, LI Zi-Hong. The analysis on IP signals in TEM response based on SVD[J]. APPLIED GEOPHYSICS, 2013, 10(1): 79-87.
[5] LIN Feng, WANG Zhu-Wen, LI Jing-Ye, ZHANG Xue-Ang, JIANG Yu-Long. Study on algorithms of low SNR inversion of T2 spectrum in NMR[J]. APPLIED GEOPHYSICS, 2011, 8(3): 233-238.
Support by Beijing Magtech