Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2018, Vol. 15 Issue (2): 234-239    DOI: 10.1007/s11770-018-0681-x
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Least squares reverse-time migration in the pseudodepth domain and reservoir exploration
Sun Xiao-Dong1,2, Jia Yan-Rui1, Zhang Min1, Li Qing-Yang1, and Li Zhen-Chun1
1. China University of Petroleum (East China), Qingdao 266580, China.
2. Laboratory for Marine Mineral Resource, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
 Download: PDF (605 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Least squares reverse-time migration (LSRTM) is an inversion method that removes artificial images and preserves the amplitude of reflectivity sections. LSRTM has been used in reservoir exploration and processing of 4D seismic data. LSRTM is, however, a computationally costly and memory-intensive method. In this study, LSRTM in the pseudodepth domain was combined with the conjugate gradient method to reduce the computational cost while maintaining precision. The velocity field in the depth domain was transformed to the velocity field in the pseudodepth domain; thus, the total number of vertical sampling points was reduced and oversampling was avoided. Synthetic and field data were used to validate the proposed method. LSRTM in the pseudodepth domain in conjunction with the conjugate gradient method shows potential in treating field data.
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
Articles by authors
Key wordsLeast squares   reverse-time migration   pseudodepth domain   conjugate gradient     
Received: 2018-02-02;

This research is sponsored by The National Natural Science Fund (No. 41574098), Shandong Provincial Natural Science Foundation (No. ZR201807080087), the Fundamental Research Funds for the Central Universities (No. 18CX02059A), the National Natural Science Fund (No. 41504100), and the national oil and gas major project (No. 2016ZX05006-002).

Cite this article:   
. Least squares reverse-time migration in the pseudodepth domain and reservoir exploration[J]. APPLIED GEOPHYSICS, 2018, 15(2): 234-239.
[1] Alkhalifah, T., Formel, S., and Biondi, B., 2001, The space-time domain: Theory and modeling for anisotropic media: Geophysical Journal International, 144(1), 105−113.
[2] Chen,Y. Q., Dutta G.,Dai, W., andSchuster, G. T., 2017, Q-least-squares reverse time migration with viscoacoustic deblurring filters:Geophysics,82(6), 425−438.
[3] Dai, W.,andSchuster, J., 2009, Least-squares migration of simultaneous sources data with a deblurring filter: 79th Annual Meeting, SEG, Extended Abstract, 2990-2994.
[4] Dai, W.,Boonyasiriwat, C., andSchuster, G. T., 2010, 3D Multi-source Least-squares Reverse Time Migration: 80th Annual Meeting, SEG, Extended Abstract, 3120-3124.
[5] Dutta, G.,andSchuster, G. T., 2014,Attenuation compensation for least-squares reverse time migration using the viscoacoustic-wave equation:Geophysics,79(6), 251-262.
[6] Erlangga, Y.,Kees, V.,Kees, O.,Plessix, R. E., andMulder, W. A.,2004, A robust iterative solver for the two-way wave equation based on a complex shifted-Laplace preconditioner: 74th Annual Meeting, SEG, Extended Abstract, 1897-1900.
[7] Li, G. H., Feng, J. G., and Zhu, G. M., 2011, Quasi-P wave forward modeling in viscoelastic VTI media in frequency-space domain: Chinese Journal of Geophysic, 54(1), 200−207.
[8] Li, Q. Y., Huang, J. P., and Li, Z. C., 2017, Cross-correlation least-squares reverse time migration in the pseudo-time domain: Journal of Geophysics and Engineering, 14(4), 841−851.
[9] Liu, H. W., Ding, R. W., Liu, L., and Liu, H., 2013, Wavefield reconstruction methods for reverse time migration: Journal of Geophysics and Engineering, 10(1), 1−6.
[10] Liu, L., Ding, R. W., Liu, H. W., and Liu, H., 2015, 3D hybrid-domain full waveform inversion on GPU: Computers & Geosciences, 83, 27−36.
[11] Ma, X., and Alkhalifah, T., 2013, Wavefield extrapolation in pseudo-depth domain: Geophysics, 78(2), 81−91.
[12] Schuster, G. T., 1993, Least-squares cross-well migration: 63rd Annual Meeting, SEG, Extended Abstract, 110-113.
[13] Sun,J. Z., Fomel,S., Zhu, T. Y., andHu, J. W.,2016, Q-compensated least-squares reverse time migration using low-rank one-step wave extrapolation:Geophysics,81(4), 271-279.
[14] Sun, X. D., Ge, Z. H., and Li, Z. C., 2017, Conjugate gradient and cross-correlation based least-square reverse time migration and its application: Applied Geophysics, 14(3), 381-386.
[15] Tang, Y. X.,2009,Target-oriented wave-equation least-squares migration/inversion with phase-encoded Hessian:Geophysics,74(6), 95-107.
[16] Wong, M.,Ronen, S., andBiondi, B., 2011, Least-squares reverse time migration/inversion for ocean bottom data: A case study: 81st Annual Meeting, SEG, Extended Abstract, 2369-2373.
[17] Yang, S. T., Wei, J. C., Cheng, J. L., Shi, L. Q., and Wen, Z. J., 2016, Numerical simulations of full-wave fields and analysis of channel wave characteristics in 3-D coal mine roadway models: Applied Geophysics, 13(4), 621−630.
[18] Zhang, D. L.,andSchuster, G. T., 2014,Least-squares reverse time migration of multiples:Geophysics, 79(1), 11-21.
[19] Zhang,Y., Duan, L., andXie,Y., 2013, A stable and practical implementation of least-squares reverse time migration: 83rd Annual Meeting, SEG, Extended Abstract, 3716-3720.
[1] Xue Hao and Liu Yang. Reverse-time migration using multidirectional wavefield decomposition method[J]. APPLIED GEOPHYSICS, 2018, 15(2): 222-233.
[2] Ren Ying-Jun, Huang Jian-Ping, Yong Peng, Liu Meng-Li, Cui Chao, and Yang Ming-Wei. Optimized staggered-grid finite-difference operators using window functions[J]. APPLIED GEOPHYSICS, 2018, 15(2): 253-260.
[3] Wu Shao-Jiang, Wang Yi-Bo, Ma Yue, Chang Xu. Super-resolution least-squares prestack Kirchhoff depth migration using the L0-norm[J]. APPLIED GEOPHYSICS, 2018, 15(1): 69-77.
[4] Yang Jia-Jia, Luan Xi-Wu, He Bing-Shou, Fang Gang, Pan Jun, Ran Wei-Min, Jiang Tao. Extraction of amplitude-preserving angle gathers based on vector wavefield reverse-time migration[J]. APPLIED GEOPHYSICS, 2017, 14(4): 492-504.
[5] Sun Xiao-Dong, Li Zhen-Chun, Jia Yan-Rui. Variable-grid reverse-time migration of different  seismic survey data[J]. APPLIED GEOPHYSICS, 2017, 14(4): 517-522.
[6] Sun Xiao-Dong, Ge Zhong-Hui, Li Zhen-Chun. Conjugate gradient and cross-correlation based least-square reverse time migration and its application[J]. APPLIED GEOPHYSICS, 2017, 14(3): 381-386.
[7] Wang Tai-Han, Huang Da-Nian, Ma Guo-Qing, Meng Zhao-Hai, Li Ye. Improved preconditioned conjugate gradient algorithm and application in 3D inversion of gravity-gradiometry data[J]. APPLIED GEOPHYSICS, 2017, 14(2): 301-313.
[8] Li Chuang, Huang Jian-Ping, Li Zhen-Chun, Wang Rong-Rong. Preconditioned prestack plane-wave least squares reverse time migration with singular spectrum constraint[J]. APPLIED GEOPHYSICS, 2017, 14(1): 73-86.
[9] Sun Xiao-Dong, Ge Zhong-Hui, Li Zhen-Chun, Hong Ying. The stability problem of reverse time migration for viscoacoustic VTI media[J]. APPLIED GEOPHYSICS, 2016, 13(4): 608-613.
[10] Yang Jia-Jia, Luan Xi-Wu, Fang Gang, Liu Xin-Xin, Pan Jun, Wang Xiao-Jie. Elastic reverse-time migration based on amplitude-preserving P- and S-wave separation[J]. APPLIED GEOPHYSICS, 2016, 13(3): 500-510.
[11] Fan Jing-Wen, Li Zhen-Chun, Zhang Kai, Zhang Min, Liu Xue-Tong. Multisource least-squares reverse-time migration with structure-oriented filtering[J]. APPLIED GEOPHYSICS, 2016, 13(3): 491-499.
[12] Luo Wei-Ping, Li Hong-Qi, and Shi Ning. Semi-supervised least squares support vector machine algorithm: application to offshore oil reservoir[J]. APPLIED GEOPHYSICS, 2016, 13(2): 406-415.
[13] Li Wen-Ben, Zeng Zhao-Fa, Li Jing, Chen Xiong, Wang Kun, Xia Zhao. 2.5D forward modeling and inversion of frequency-domain airborne electromagnetic data[J]. APPLIED GEOPHYSICS, 2016, 13(1): 37-47.
[14] Zhang Gong, Li Ning, Guo Hong-Wei, Wu Hong-Liang, Luo Chao. Fracture identification based on remote detection acoustic reflection logging[J]. APPLIED GEOPHYSICS, 2015, 12(4): 473-481.
[15] Cai Xiao-Hui, Liu Yang, Ren Zhi-Ming, Wang Jian-Min, Chen Zhi-De, Chen Ke-Yang, Wang Cheng. Three-dimensional acoustic wave equation modeling based on the optimal finite-difference scheme[J]. APPLIED GEOPHYSICS, 2015, 12(3): 409-420.
Support by Beijing Magtech