Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2018, Vol. 15 Issue (2): 240-252    DOI: 10.1007/s11770-018-0667-8
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Seismic prediction method of multiscale fractured reservoir
Wang Ling-Ling1,2, Wei Jian-Xin1,2, Huang Ping3, Di Bang-Rang1,2, and Zhang Fu-Hong3
1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China.
2. CNPC Key Laboratory of Geophysical Prospecting, China University of Petroleum, Beijing 102249, China.
3. Research Institute of CNPC Southwest Oil and Gas Field Branch, Chengdu 641500, China.
 Download: PDF (1840 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Common prestack fracture prediction methods cannot clearly distinguish multiple-scale fractures. In this study, we propose a prediction method for macro- and mesoscale fractures based on fracture density distribution in reservoirs. First, we detect the macroscale fractures (larger than 1/4 wavelength) using the multidirectional coherence technique that is based on the curvelet transform and the mesoscale fractures (1/4–1/100 wavelength) using the seismic azimuthal anisotropy technique and prestack attenuation attributes, e.g., frequency attenuation gradient. Then, we combine the obtained fracture density distributions into a map and evaluate the variably scaled fractures. Application of the method to a seismic physical model of a fractured reservoir shows that the method overcomes the problem of discontinuous fracture density distribution generated by the prestack seismic azimuthal  anisotropy method, distinguishes the fracture scales, and identifies the fractured zones accurately.
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
Articles by authors
Key wordsMultiscales   fracture detection   coherence   attenuation   seismic anisotropy     
Received: 2017-07-05;

This research was financially supported by the National Natural Science Foundation of China (No. 41474112) and the National Science and Technology Major Project (No. 2017ZX05005-004).

Cite this article:   
. Seismic prediction method of multiscale fractured reservoir[J]. APPLIED GEOPHYSICS, 2018, 15(2): 240-252.
[1] An, Y., 2015, Fracture prediction using prestack Q calculation and attenuation anisotropy: Applied Geophysics, 12(3), 432-440.
[2] Behura, J., Tsvankin, I., Jenner, E., et al., 2012, Estimation of interval velocity and attenuation anisotropy from reflection data at Coronation Field: The Leading Edge, 31(5), 580-587.
[3] Candès, E. J., and Donoho, D. L., 1999, Curvelets: a surprisingly effective nonadaptive representation for objects with edges, In Cohen, A., Rabut, C., and Schumaker, L. Eds., Curve and Surface Fitting: Vanderbilt Univ. Press, Saint-Malo.
[4] Candès, E. J., and Donoho, D. L., 2004, New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities: Communications on Pure and Applied Mathematics, 57(2), 219-266.
[5] Clark, R. A., Benson, P. M., Carter, A. J., et al., 2009, Anisotropic P-wave attenuation measured from a multi-azimuth surface seismic reflection survey: Geophysical Prospecting, 57(5), 835-845.
[6] Chen, S. Q., Zeng, L. B., Huang, P., et al., 2016, The application study on the multi-scales integrated prediction method to fractured reservoir description: Applied Geophysics, 13(1), 80-92.
[7] Chichinina, T., Sabinin, V., and Ronquillo-Jarillo, G., 2006, QVOA analysis: P-wave attenuation anisotropy for fracture characterization: Geophysics, 71(3), C37-C48.
[8] Chichinina, T., Obolentseva, I., Gik, L., et al., 2009, Attenuation anisotropy in the linear-slip model: Interpretation of physical modeling data: Geophysics, 74(5), WB165-WB176.
[9] Far, M. E., Sayers, C. M., Thomsen, L., et al., 2013, Seismic characterization of naturally fractured reservoirs using amplitude versus offset and azimuth analysis: Geophysical Prospecting, 61(2), 427-447.
[10] He, Y. D., and Wei, C. G., 2007, The present situation and research direction of evaluation methods in fracture type reservoir: Progress in Geophysics (in Chinese), 22(2), 537-543.
[11] Li, T. T., Wang, Z., Ma, S. Z., et al., 2015, Summary of seismic attributes fusion method: Progress in Geophysics (in Chinese), 30(1), 378-385.
[12] Liu, C. H., 2001, Application of seismic coherent analysis technology to prediction of fractured reservoir: Oil Geophysical Prospecting (in Chinese), 36(2), 238-243.
[13] Macbeth, C., and Li, X. Y., 1999, AVD - an emerging new marine technology for reservoir characterization: acquisition and application: Geophysics, 64(4), 1153-1159.
[14] Maultzsch, S., Chapman, M., Liu, E., et al., 2007, Modelling and analysis of attenuation anisotropy in multi-azimuth VSP data from the Clair field: Geophysical Prospecting, 55(5), 627−642.
[15] Mu, X. L., Zhao, G. L., Tian, Z. Y., et al., 2009, Prediction of fractures in the reservoirs (in Chinese): Petroleum Industry Press, Beijing, 56.
[16] Qu, S. L., Ji, Y. X., Wang, X., et al., 2001, Seismic method for using full-azimuth P wave attribution to detct fracture: Oil Geophysical Prospecting (in Chinese), 36(4), 390-397.
[17] Rüger, A., 1997, P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry: Geophysics, 62(3), 713-722.
[18] Sams, M. S., Neep, J. P., Worthington, M. H., et al., 1997, The measurement of velocity dispersion and frequency-dependent intrinsic attenuation in sedimentary rocks: Geophysics, 62(5), 1456-1464.
[19] Sigismondi, M. E., and Soldo, J. C., 2003, Curvature attributes and seismic interpretation: Case studies from Argentina basins: The Leading Edge, 22(11), 1122-1126.
[20] Shekar, B., and Tsvankin, I., 2012, Anisotropic attenuation analysis of crosshole data generated during hydraulic fracturing: The Leading Edge, 31(5), 588-593.
[21] Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51(10), 1954-1966.
[22] Wang, L., Chen, H. Q., Chen, G. W., et al., 2010, Application of curvature attributes in predicting fracture - developed zone and its orientation: Oil Geophysical Prospecting (in Chinese), 45(6), 885-889.
[23] Wang, L. L., Wei, J. X., Huang, P., et al., 2017, Study of seismic physical modelling of fractured reservoirs: Petroleum Science Bulletin (in Chinese), 02, 210-227.
[24] Wang, S. X., Yuan, S. Y., Yan, B. P., et al., 2016, Directional complex-valued coherence attributes for discontinuous edge detection: Journal of Applied Geophysics, 129, 1-7.
[25] Wang, Y., Chen, X. G., Wang, Y. L., et al., 2014, Application of multiple poststack seismic attributes in the prediction of carboniferous fracture in west Hashan: Progress in Geophysics (in Chinese), 29(4), 1772-1779.
[26] Wang, Y. J., Chen, S. Q., and Li, X. Y., 2015, Anisotropic characteristics of mesoscale fractures and applications to wide azimuth 3D P-wave seismic data: Journal of Geophysics and Engineering, 12(3), 448-464.
[27] Wang, H. Q., Yang, W. Y., Xie, C. H., et al., 2014, Azimuthal anisotropy analysis of different seismic attributes and fracture prediction: Oil Geophysical Prospecting (in Chinese), 49(5), 925-931.
[28] Yin, Z. H., Li, X. Y., Wei, J. X., et al., 2012, A physical modeling study on the 3D P-wave azimuthal anisotropy in HTI media: Chinese Journal Geophysics. (in Chinese), 55(11), 3805−3812.
[29] Yuan, S. Y., Wang, S. X., Tian, N., et al., 2016, Stable inversion-based multitrace deabsorption method for spatial continuity preservation and weak signal compensation: Geophysics, 81(3), V199-V212.
[30] Zheng, J. J., Yin, X. Y., Zhang, G. Z., et al., 2009, Multi-scale analysis technique based on curvelet transform: Oil Geophysical Prospecting (in Chinese), 44(5), 543-547.
[31] Zhang, G. Z., Zheng, J. J., Yin, X. Y., et al., 2011, Identification technology of fracture zone and its strike based on the Curvelet transform: Oil Geophysical Prospecting (in Chinese), 46(5), 757-762.
[32] Zhang, J. Y., He, Z. H., and Huang, D. J., 2010, Application of frequency attenuation gradient in prediction of gas and oil potentials: Progress in Exploration Geophysics, 33(3), 207-211.
[1] Guo Gui-Hong, Yan Jian-Ping, Zhang Zhi, José Badal, Cheng Jian-Wu, Shi Shuang-Hu, and Ma Ya-Wei. Numerical analysis of seismic wave propagation in fluid-saturated porous multifractured media[J]. APPLIED GEOPHYSICS, 2018, 15(2): 311-317.
[2] Sun Si-Yuan, Yin Chang-Chun, Gao Xiu-He, Liu Yun-He, and Ren Xiu-Yan. Gravity compression forward modeling and multiscale inversion based on wavelet transform[J]. APPLIED GEOPHYSICS, 2018, 15(2): 342-352.
[3] Li Chang-Zheng, Yang Yong, Wang Rui, Yan Xiao-Fei. Acoustic parameters inversion and sediment properties in the Yellow River reservoir[J]. APPLIED GEOPHYSICS, 2018, 15(1): 78-90.
[4] Zhao Yu-Min, Li Guo-Fa, Wang Wei, Zhou Zhen-Xiao, Tang Bo-Wen, Zhang Wen-Bo. Inversion-based data-driven time-space domain random noise attenuation method[J]. APPLIED GEOPHYSICS, 2017, 14(4): 543-550.
[5] Wang Wan-Li, Yang Wu-Yang, Wei Xin-Jian, He Xin. Ground roll wave suppression based on wavelet frequency division and radial trace transform[J]. APPLIED GEOPHYSICS, 2017, 14(1): 96-104.
[6] He Yi-Yuan, Hu Tian-Yue, He Chuan, Tan Yu-Yang. P-wave attenuation anisotropy in TI media and its application in fracture parameters inversion[J]. APPLIED GEOPHYSICS, 2016, 13(4): 649-657.
[7] Liu Xue-Qing, Wang Yan-Chun, Zhang Gui-Bing, Ma Sheng-Li, Cheng Li-Fang, Yu Wen-Wu. Calculation method of prestack FAGVO and its applications[J]. APPLIED GEOPHYSICS, 2016, 13(4): 641-648.
[8] Yang Tao, Gao Jing-Huai, Zhang Bing, Wang Da-Xing. Coherence estimation algorithm using Kendall’s concordance measurement on seismic data[J]. APPLIED GEOPHYSICS, 2016, 13(3): 529-538.
[9] Seyyed Ali Fa’al Rastegar, Abdolrahim Javaherian, Naser Keshavarz Farajkhah. Ground-roll attenuation using modified common-offset–common-reflection-surface stacking[J]. APPLIED GEOPHYSICS, 2016, 13(2): 353-363.
[10] Chen Shuang-Quan, Zeng Lian-Bo, Huang Ping, Sun Shao-Han, Zhang Wan-Lu, Li Xiang-Yang. The application study on the multi-scales integrated prediction method to fractured reservoir description[J]. APPLIED GEOPHYSICS, 2016, 13(1): 80-92.
[11] Gan Shu-Wei, Wang Shou-Dong, Chen Yang-Kang, Chen Jiang-Long, Zhong Wei, Zhang Cheng-Lin. Improved random noise attenuation using f–x empirical mode decomposition and local similarity[J]. APPLIED GEOPHYSICS, 2016, 13(1): 127-134.
[12] Li Yuan-Yuan, Li Zhen-Chun, Zhang Kai, Zhang Xuan. Frequency-domain elastic full-waveform multiscale inversion method based on dual-level parallelism[J]. APPLIED GEOPHYSICS, 2015, 12(4): 545-554.
[13] An Yong. Fracture prediction using prestack Q calculation and attenuation anisotropy[J]. APPLIED GEOPHYSICS, 2015, 12(3): 432-440.
[14] Guo Zhi-Qi, Liu Xi-Wu, Fu Wei, Li Xiang-Yang. Modeling and analysis of azimuthal AVO responses from a viscoelastic anisotropic reflector[J]. APPLIED GEOPHYSICS, 2015, 12(3): 441-452.
[15] Zhang Qian-Jiang, Dai Shi-Kun, Chen Long-Wei, Li Kun, Zhao Dong-Dong, Huang Xing-Xing. Two-dimensional frequency-domain acoustic full-waveform inversion with rugged topography[J]. APPLIED GEOPHYSICS, 2015, 12(3): 378-388.
Support by Beijing Magtech