APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2018, Vol. 15 Issue (2): 253-260    DOI: 10.1007/s11770-018-0668-7
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Optimized staggered-grid finite-difference operators using window functions
Ren Ying-Jun1,2, Huang Jian-Ping1,2, Yong Peng1,2,3, Liu Meng-Li1,2, Cui Chao1,2, and Yang Ming-Wei1,2
1. School of Geosciences, China University of Petroleum, Qingdao 266580, China.
2. Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
3. Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
 Download: PDF (712 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract The staggered-grid finite-difference (SGFD) method has been widely used in seismic forward modeling. The precision of the forward modeling results directly affects the results of the subsequent seismic inversion and migration. Numerical dispersion is one of the problems in this method. The window function method can reduce dispersion by replacing the finite-difference operators with window operators, obtained by truncating the spatial convolution series of the pseudospectral method. Although the window operators have high precision in the low-wavenumber domain, their precision decreases rapidly in the high-wavenumber domain. We develop a least squares optimization method to enhance the precision of operators obtained by the window function method. We transform the SGFD problem into a least squares problem and find the best solution iteratively. The window operator is chosen as the initial value and the optimized domain is set by the error threshold. The conjugate gradient method is also adopted to increase the stability of the solution. Approximation error analysis and numerical simulation results suggest that the proposed method increases the precision of the window function operators and decreases the numerical dispersion.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Key wordsStaggered-grid finite-difference operator   window function   least squares   numerical dispersion     
Received: 2017-11-07;
Fund:

This work was jointly supported by the NSF (No. 41720104006), the Strategic Priority Research Program of the Chinese Academy of Sciences (A) (No. XDA14010303), the National Oil and Gas Project (Nos. 2016ZX05002-005-007HZ and 2016ZX05014-001-008HZ), the Shandong Innovation Project (No. 2017CXGC1602), and the Qingdao Innovation Project (Nos. 16-5-1-40-jch and 17CX05011).

Cite this article:   
. Optimized staggered-grid finite-difference operators using window functions[J]. APPLIED GEOPHYSICS, 2018, 15(2): 253-260.
 
[1] Chao, C., Huang, J. P., Li, Z. C., et al., 2017, Reflection full-waveform inversion using a modified phase misfit function[J]: Applied Geophysics (English Edition), 14(3), 407-418.
[2] Chu, C. L., and Stoffa, P. L., 2012, Determination of finite-difference weights using scaled binomial windows: Geophysics, 77(3), W17-W26. doi: 10.1190/GEO2011-0336.1
[3] Diniz, P. S. R., Da Silva, E. A. B., Netto, S. L., 2010, Digital signal processing: system analysis and design [M], Cambridge University Press.
[4] Fornberg, B., 1987, The pseudospectral method: Comparisons with finite differences for the elastic wave equation: Geophysics, 52(4), 483-501. doi: 10.1190/1.1442319
[5] Gazdag, J., 1981, Modeling of the acoustic wave equation with transform methods[J]: Geophysics, 46(6), 854-859.
[6] Harris, F. J., 1978, On the use of windows for harmonic analysis with the discrete Fourier transform [J]: Proceedings of the IEEE, 66(1), 51-83.
[7] Holberg, O., 1987, Computational aspects of the choice of operator and sampling interval for numerical differentiation in large-scale simulation of wave phenomena [J]: Geophysical Prospecting, 35(6), 629-655.
[8] Huang, J., Li, C., Wang, R., et al., 2015, Plane-Wave Least-Squares Reverse Time Migration for Rugged Topography [J]: Journal of Earth Science, 26(4), 471-480.
[9] Igel, H., Mora, P., and Riollet, B., 1995, Anisotropic wave propagation through finite-difference grids. Geophysics, 60(4), 1203-1216. doi: 10.1190/1.1443849
[10] Kaiser, J. F., 1974, Nonrecursive digital filter design using the I_0-Sinh window function: Proceedings of the 1974 IEEE International Symposium on Circuits and Systems, 20-23.
[11] Li, C., Huang, J., Li, Z., et al., 2016, Plane-wave least-square reverse time migration with encoding strategies [J]: Journal of Seismic Exploration, 25(2), 177-197.
[12] Liu, Y., 2013, Globally optimal finite-difference schemes based on least squares, Geophysics, 78(4), T113-T132.
[13] Ren, Z., Liu, Y., and Zhang, Q., 2014, Multiscale viscoacoustic waveform inversion with the second generation wavelet transform and adaptive time-space domain finite-difference method [J]: Geophysical Journal International, 197(2), 948-974.
[14] Robertsson, J. O. A., Blanch, J. O., Symes, W. W., et al., 1994, Galerkin-wavelet modeling of wave propagation: Optimal finitedifference stencil design: Mathematical and Computer Modelling, 19(1), 31-38. doi: 10.1016/0895- 7177(94): 90113-9
[15] Smith, J. O., 2010, Physical audio signal processing, W3K Publishing.
[16] Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation: Geophysics, 49(8), 1259-1266.
[17] Wang, Z. Y., Liu, H., Tang, X. D., et al., 2015, Optimized finite-difference operators based on Chebyshev auto-convolution combined window function: Chinese J. Geophysics. (in Chinese), 58(2), 628-642. doi:10.6038/cjg20150224
[18] Yong, P., Huang, J., Li, Z., et al., 2016, Optimized equivalent staggered-grid FD method for time-space domain seismic modeling: Chinese J. Geophysics. (in Chinese), 59(11), 4223-4233.
[19] Yong, P., Huang, J., Li, Z., et al., 2017, Optimized equivalent staggered-grid FD method for elastic wave modelling based on plane wave solutions [J]: Geophysical Journal International, 208(2), 1157-1172.
[20] Zheng, W. Q., Meng, X. H., Liu, J. H., et al., 2016, High precision elastic wave equation forward modeling based on cosine modulated Chebyshev window function: Chinese J. Geophysics. (in Chinese), 59(7), 2650-2662. doi:10.6038/cjg20160728
[1] Sun Xiao-Dong, Jia Yan-Rui, Zhang Min, Li Qing-Yang, and Li Zhen-Chun. Least squares reverse-time migration in the pseudodepth domain and reservoir exploration[J]. APPLIED GEOPHYSICS, 2018, 15(2): 234-239.
[2] Wu Shao-Jiang, Wang Yi-Bo, Ma Yue, Chang Xu. Super-resolution least-squares prestack Kirchhoff depth migration using the L0-norm[J]. APPLIED GEOPHYSICS, 2018, 15(1): 69-77.
[3] Li Chuang, Huang Jian-Ping, Li Zhen-Chun, Wang Rong-Rong. Preconditioned prestack plane-wave least squares reverse time migration with singular spectrum constraint[J]. APPLIED GEOPHYSICS, 2017, 14(1): 73-86.
[4] . Cosine-modulated window function-based staggered-grid finite-difference forward modeling[J]. APPLIED GEOPHYSICS, 2017, 14(1): 115-124.
[5] Fan Jing-Wen, Li Zhen-Chun, Zhang Kai, Zhang Min, Liu Xue-Tong. Multisource least-squares reverse-time migration with structure-oriented filtering[J]. APPLIED GEOPHYSICS, 2016, 13(3): 491-499.
[6] Luo Wei-Ping, Li Hong-Qi, and Shi Ning. Semi-supervised least squares support vector machine algorithm: application to offshore oil reservoir[J]. APPLIED GEOPHYSICS, 2016, 13(2): 406-415.
[7] Li Wen-Ben, Zeng Zhao-Fa, Li Jing, Chen Xiong, Wang Kun, Xia Zhao. 2.5D forward modeling and inversion of frequency-domain airborne electromagnetic data[J]. APPLIED GEOPHYSICS, 2016, 13(1): 37-47.
[8] ZHANG Chao-Yuan, MA Xiao, YANG Lei, SONG Guo-Jie. Symplectic partitioned Runge–Kutta method based on the eighth-order nearly analytic discrete operator and its wavefield simulations[J]. APPLIED GEOPHYSICS, 2014, 11(1): 89-106.
[9] CHEN Guo-Xin, CHEN Sheng-Chang, WANG Han-Chuang, ZHANG Bo. Geophysical data sparse reconstruction based on L0-norm minimization[J]. APPLIED GEOPHYSICS, 2013, 10(2): 181-190.
[10] GUO Shu-Juan, LI Zhen-Chun, TONG Zhao-Qi, MA Fang-Zheng, LIU Jian-Hui. Interpolation of near offset using surface-related multiples[J]. APPLIED GEOPHYSICS, 2011, 8(3): 225-232.
[11] DU Qi-Zhen, LI Bin, HOU Bo. Numerical modeling of seismic wavefields in transversely isotropic media with a compact staggered-grid finite difference scheme[J]. APPLIED GEOPHYSICS, 2009, 6(1): 42-49.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn