Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2018, Vol. 15 Issue (2): 261-270    DOI: 10.1007/s11770-018-0669-6
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Multiscale full-waveform inversion based on shot subsampling
Shi Cai-Wang1,2,3 and He Bing-Shou1,2,3
1. Ocean University of China, Qingdao 266100, China.
2. Evaluation and Detection Technology Laboratory of Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
3. Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education, Qingdao 266100, China.
 Download: PDF (1145 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Conventional full-waveform inversion is computationally intensive because it considers all shots in each iteration. To tackle this, we establish the number of shots needed and propose multiscale inversion in the frequency domain while using only the shots that are positively correlated with frequency. When using low-frequency data, the method considers only a small number of shots and raw data. More shots are used with increasing frequency. The random-in-group subsampling method is used to rotate the shots between iterations and avoid the loss of shot information. By reducing the number of shots in the inversion, we decrease the computational cost. There is no crosstalk between shots, no noise addition, and no observational limits. Numerical modeling suggests that the proposed method reduces the computing time, is more robust to noise, and produces better velocity models when using data with noise.
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
Articles by authors
Key wordsWaveform   inversion   frequency   shot subsampling     
Received: 2017-02-08;

The research was financially supported by the Fundamental Research Funds for the Central Universities (No. 201822011), the National Natural Science Foundation of China (No. 41674118) and the National Science and Technology Major Project (No. 2016ZX05027002).

Cite this article:   
. Multiscale full-waveform inversion based on shot subsampling[J]. APPLIED GEOPHYSICS, 2018, 15(2): 261-270.
[1] Ben-Hadj-Ali, H., Operto, S., and Virieux, J., 2011, An efficient frequency-domain full waveform inversion method using simultaneous encoded sources: Geophysics, 76(76), R109−R124.
[2] Brossier, R., Operto, S., and Virieux, J., 2009, Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion: Geophysics, 74(6), WCC105−WCC118.
[3] Bunks, C., Saleck, F. M., Zaleski, S., et al., 1995, Multiscale seismic waveform inversion: Geophysics, 60(5), 1457−1473.
[4] Choi, Y., and Alkhalifah, T., 2012, Application of multi-source waveform inversion to marine streamer data using the global correlation norm: Geophysical Prospecting, 60(4),748-758.
[5] Díaz, E., and Guitton, A., 2011, Fast full waveform inversion with random shot decimation: 81st Annual International Meeting, SEG, Expanded Abstracts, 2804−2808.
[6] Ha, W., and Shin, C., 2013, Efficient Laplace-domain full waveform inversion using a cyclic shot subsampling method: Geophysics, 78(2), R37−R46.
[7] Han, M., Han, L. G., Liu, C. C., et al., 2013, Frequency-domain auto-adapting full waveform inversion with blended source and frequency-group encoding: Applied Geophysics, 10(1), 41-52.
[8] Jo, C. H., Suh, J. H., and Shin, C., 1996, An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator: Geophysics, 61(2), 529−537.
[9] Krebs, J. R., Anderson J. E., Hinkley D., et al., 2009, Fast full-wavefield seismic inversion using encoded sources: Geophysics, 74(6), WCC177−WCC188.
[10] Liu, C., Han, M., Han, L., et al., 2012, Application of principal component analysis for frequency-domain full waveform inversion: 82nd Annual International Meeting, SEG, Expanded Abstracts, 1−5.
[11] Liu, L., Liu, H., Zhang, H., et al., 2013, Full waveform inversion based on modified quasi-Newton equation: Chinese Journal of Geophysics, 56(4), 465−470.
[12] Mao, J., Wu, R. S., and Wang, B., 2012, Multiscale full waveform inversion using GPU: 82nd Annual International Meeting, SEG, Expanded Abstracts, 2012, 1−7.
[13] Miao, Y. K., 2015, Full waveform inversion in time domain based on limited-memory BFGS algorithm: Oil Geophysical Prospecting (in Chinese), 50(3), 469−474.
[14] Operto, S., Virieux, J., Amestoy, P., et al., 2007, 3-D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: a feasibility study: Geophysics, 72(5), 195−211.
[15] Plessix, R. E., 2007, A Helmholtz iterative solver for 3D seismic-imaging problems: Geophysics, 72(5), 185-194.
[16] Pratt, R. G., and Worthington, M. H., 1990, Inverse theory applied to multi-source cross-hole tomography. Part 1: acoustic wave-equation method: Geophysical Prospecting, 38(3), 287−310.
[17] Pratt, R. G., Shin, C., and Hick, G. J., 1998, Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion: Geophysical Journal International, 133(2), 341−362.
[18] Pratt, R. G., 1999, Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model: Geophysics, 64(3), 888−901.
[19] Romero, L. A., Ghiglia, D. C., Ober, C. C., et al., 2000, Phase encoding of shot records in prestack migration: Geophysics, 65(2), 426−436.
[20] Sirgue, L., Etgen, J. T., and Albertin, U., 2008, 3D frequency domain waveform inversion using time domain finite difference methods:70th EAGE Annual Meeting, Expanded Abstracts, F022.
[21] Shin, C., Jang, S., and Min, D. J., 2001, Improved amplitude preservation for prestack depth migration by inverse scattering theory:Geophysical Prospecting,49(5), 592-606.
[22] Shin, J., Ha, W., Jun, H., et al., 2014, 3D Laplace-domain full waveform inversion using a single GPU card: Computers & Geosciences, 67(4), 1−13.
[23] Tao, Y., and Sen, M. K., 2012, Frequency-domain full waveform inversion with plane-wave data: Geophysics, 78(1), R13−R23.
[24] Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation: Geophysics, 49(8), 1259−1266.
[25] Virieux, J., and Operto, S., 2009, An overview of full-waveform inversion in exploration geophysics: Geophysics, 74(6), WCC1-WCC26.
[1] Gao Zong-Hui, Yin Chang-Chun, Qi Yan-Fu, Zhang Bo, Ren Xiu-Yan, and Lu Yong-Chao. Transdimensional Bayesian inversion of time-domain airborne EM data[J]. APPLIED GEOPHYSICS, 2018, 15(2): 318-331.
[2] Sun Si-Yuan, Yin Chang-Chun, Gao Xiu-He, Liu Yun-He, and Ren Xiu-Yan. Gravity compression forward modeling and multiscale inversion based on wavelet transform[J]. APPLIED GEOPHYSICS, 2018, 15(2): 342-352.
[3] Li Chang-Zheng, Yang Yong, Wang Rui, Yan Xiao-Fei. Acoustic parameters inversion and sediment properties in the Yellow River reservoir[J]. APPLIED GEOPHYSICS, 2018, 15(1): 78-90.
[4] Sun Cheng-Yu, Wang Yan-Yan, Wu Dun-Shi, Qin Xiao-Jun. Nonlinear Rayleigh wave inversion based on the shuffled frog-leaping algorithm[J]. APPLIED GEOPHYSICS, 2017, 14(4): 551-558.
[5] Li Zhen-Chun, Lin Yu-Zhao, Zhang Kai, Li Yuan-Yuan, Yu Zhen-Nan. Time-domain wavefield reconstruction inversion[J]. APPLIED GEOPHYSICS, 2017, 14(4): 523-528.
[6] Zhao Yu-Min, Li Guo-Fa, Wang Wei, Zhou Zhen-Xiao, Tang Bo-Wen, Zhang Wen-Bo. Inversion-based data-driven time-space domain random noise attenuation method[J]. APPLIED GEOPHYSICS, 2017, 14(4): 543-550.
[7] Cui Chao, Huang Jian-Ping, Li Zhen-Chun, Liao Wen-Yuan, Guan Zhe. Reflection full-waveform inversion using a modified phase misfit function[J]. APPLIED GEOPHYSICS, 2017, 14(3): 407-418.
[8] Huang Xin, Yin Chang-Chun, Cao Xiao-Yue, Liu Yun-He, Zhang Bo, Cai Jing. 3D anisotropic modeling and identification for airborne EM systems based on the spectral-element method[J]. APPLIED GEOPHYSICS, 2017, 14(3): 419-430.
[9] Wang Jun-Lu, Lin Pin-Rong, Wang Meng, Li Dang, Li Jian-Hua. Three-dimensional tomography using high-power induced polarization with the similar central gradient array[J]. APPLIED GEOPHYSICS, 2017, 14(2): 291-300.
[10] . Inversion of river-bottom sediment parameters using mechanically sampled specimens and subbottom profiling data[J]. APPLIED GEOPHYSICS, 2017, 14(2): 225-235.
[11] Zhang Hua, He Zhen-Hua, Li Ya-Lin, Li Rui, He Guamg-Ming, Li Zhong. Research and application of spectral inversion technique in frequency domain to improve resolution of converted PS-wave[J]. APPLIED GEOPHYSICS, 2017, 14(2): 247-257.
[12] Wang Kun-Peng, Tan Han-Dong, Wang Tao. 2D joint inversion of CSAMT and magnetic data based on cross-gradient theory[J]. APPLIED GEOPHYSICS, 2017, 14(2): 279-290.
[13] Wang Tai-Han, Huang Da-Nian, Ma Guo-Qing, Meng Zhao-Hai, Li Ye. Improved preconditioned conjugate gradient algorithm and application in 3D inversion of gravity-gradiometry data[J]. APPLIED GEOPHYSICS, 2017, 14(2): 301-313.
[14] Liang Li-Feng, Zhang Hong-Bing, Dan Zhi-Wei, Xu Zi-Qiang, Liu Xiu-Juan, Cao Cheng-Hao. Prestack density inversion using the Fatti equation constrained by the P- and S-wave impedance and density[J]. APPLIED GEOPHYSICS, 2017, 14(1): 133-141.
[15] Xing Feng-Yuan, Yang Kai, Xue Dong, Wang Xiao-Jiang, Chen Bao-Shu. Application of 3D stereotomography to the deep-sea data acquired in the South China Sea: a tomography inversion case[J]. APPLIED GEOPHYSICS, 2017, 14(1): 142-153.
Support by Beijing Magtech