APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2018, Vol. 15 Issue (2): 271-279    DOI: 10.1007/s11770-018-0677-6
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Mixed Cadzow filtering method in fractional Fourier domain
Cao Zhong-Lin1,2,3, Cao Jun-Xing1, Wu Fu-Rong2,3, He Guang-Ming2,3, Zhou Qiang2,3, and Wu Yu-Lin2,3
1. Chengdu University of Technology, Chengdu, Sichuan 610059, China.
2. Research and Development Center, BGP Inc., CNPC, Zhuozhou, Hebei 072750, China.
3. Mountain Geophysical Technology Test Center, CNPC, Chengdu, Sichuan 610213, China.
 Download: PDF (1126 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Conventional frequency domain singular value decomposition (SVD) filtering method used in random noise attenuation processing causes bending event damage. To mitigate this problem, we present a mixed Cadzow filtering method based on fractional Fourier transform to suppress random noise in 3D seismic data. First, the seismic data is transformed to the time-frequency plane via the fractional Fourier transform. Second, based on the Eigenimage filtering method and Cadzow filtering method, the mixed high-dimensional Hankel matrix is built; then, SVD is performed. Finally, random noise is eliminated effectively by reducing the rank of the matrix. The theoretical model and real applications of the mixed filtering method in a region of Sichuan show that our method can not only suppress noise effectively but also preserve the frequency and phase of effective signals quite well and significantly improve the signal-to-noise ratio of 3D post-stack seismic data.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Key words3D   random noise   Cadzow filtering method   fractional Fourier transforms     
Received: 2017-07-14;
Fund:

This research work was sponsored by the major science and technology special topic of CNPC (No. 2013E-38-08).

Cite this article:   
. Mixed Cadzow filtering method in fractional Fourier domain[J]. APPLIED GEOPHYSICS, 2018, 15(2): 271-279.
 
[1] Almeida, L. B., 1994, The fractional fourier transform and time-frequency representations: IEEE Trans. Signal Processing, 42(11), 3084-3091.
[2] Cadzow, J. A., 1988, Signal enhancement: A Composite Property Mapping Algorithm: IEEE Trans. On Acoustics, Speech, and Signal Processing, 36(1), 49-62.
[3] Cui, S. G., Zhu, L.Y., and Wang, J. H., 2012, Random noise attenuation with cadzow technique in F-X domain and its application: Geophysical Prospecting for Petroleum (in Chinese), 51(1), 43-50.
[4] Hornbostel, S., 1991, Spatial prediction filtering in the T-X and F-X domains: Geophysics, 56(1), 2019-2026.
[5] Liu, Y. F., Zou, S. S., and Ju, X. G., 2017, Seismic random noise self-adaptive attenuation method based on K-L transform in the contourlet-domain: Geophysical Prospecting for Petroleum (in Chinese), 56(5), 676-683.
[6] Liu, Z. P., Zhao, W., Chen, X. H., et al., 2012, Local SVD for random noise suppression of seismic data in frequency domain: Oil Geophysical Prospecting (in Chinese), 7(2), 202-206.
[7] Montana, C. A., and Margrave, G. F., 2004, Spatial prediction filtering in fractional fourier domains: 72th Annual International Meeting, SEG, Expanded Abstracts, 241-244.
[8] Namias V., 1980, The fractional order fourier transform and its application to quantum mechanics: J.Inst.Maths. Applics, 25(3), 241-265.
[9] Ozaktas, H. M., Arikan, O., Alper Kutay, M. A., and Bozdagi, G., 1996, Digital computation of the fractional fourier transform: IEEE Transactions on Signal Processing, 44(9), 2141-2150.
[10] Trickett, S., 2002, F-x eigenimage noise suppression: 72th Annual International Meeting, SEG, Expanded Abstracts, 2166-2169.
[11] Trickett, S., 2003, F-xy eigenimage noise suppression: Geophysics, 68(2), 751-759.
[12] Trickett, S., 2008, F-xy cadzow noise suppression: 78th Annual International Meeting, SEG, Expanded Abstracts, 2586-2590.
[13] Trickett, S., 2012, Robust rank-reduction filtering for erratic noise: 70th Annual International Meeting, SEG, Expanded Abstracts, 129-132.
[14] Ulrych, T. J., Sacchi, M. D., and Freire, S. L. M., 1999, Eigenimage processing of seismic sections: 67th Annual International Meeting, SEG, Expanded Abstracts, 241-274.
[15] Xu, Y. K., Cao, S. Y., and He, Y., 2017, Prestack seismic random noise attenuation with a hyperbolic radon ASVD: Oil Geophysical Prospecting (in Chinese), 52(3), 451-457.
[16] Yuan, S. Y., and Wang, S. X., 2011, A local f-x cadzow method for noise reduction of seismic data obtained in complex formations: Petroleum Science (in Chinese), 8(3), 269-277.
[1] Chang De-Kuan, Yang Wu-Yang, Wang Yi-Hui, Yang Qing, Wei Xin-Jian, Feng Xiao-Ying. Random noise suppression for seismic data using a non-local Bayes algorithm[J]. APPLIED GEOPHYSICS, 2018, 15(1): 91-98.
[2] Gan Shu-Wei, Wang Shou-Dong, Chen Yang-Kang, Chen Jiang-Long, Zhong Wei, Zhang Cheng-Lin. Improved random noise attenuation using f–x empirical mode decomposition and local similarity[J]. APPLIED GEOPHYSICS, 2016, 13(1): 127-134.
[3] Ma Yan-Yan, Li Guo-Fa, Wang Yao-Jun, Zhou Hui, Zhang Bao-Jiang. Random noise attenuation by f–x spatial projection-based complex empirical mode decomposition predictive filtering[J]. APPLIED GEOPHYSICS, 2015, 12(1): 47-54.
[4] Liu Cai, Chen Chang-Le, Wang Dian, Liu Yang, Wang Shi-Yu, Zhang Liang. Seismic dip estimation based on the two-dimensional Hilbert transform and its application in random noise attenuation[J]. APPLIED GEOPHYSICS, 2015, 12(1): 55-63.
[5] SHANG Shuai, HAN Li-Guo, 吕Qing-Tian , TAN Chen-Qing. Seismic random noise suppression using an adaptive nonlocal means algorithm[J]. APPLIED GEOPHYSICS, 2013, 10(1): 33-40.
[6] XU De-Ping, GUO Ke. Fractional S transform – Part 1: Theory*[J]. APPLIED GEOPHYSICS, 2012, 9(1): 73-79.
[7] CAI Han-Peng, HE Zhen-Hua, HUANG De-Ji. Seismic data denoising based on mixed time-frequency methods[J]. APPLIED GEOPHYSICS, 2011, 8(4): 319-327.
[8] WANG De-Li, TONG Zhong-Fei, TANG Chen, ZHU Heng. An iterative curvelet thresholding algorithm for seismic random noise attenuation[J]. APPLIED GEOPHYSICS, 2010, 7(4): 315-324.
[9] LIU Zhi-Peng, CHEN Xiao-Hong, LI Jing-Ye. Noncausal spatial prediction filtering based on an ARMA model[J]. APPLIED GEOPHYSICS, 2009, 6(2): 122-128.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn