APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2018, Vol. 15 Issue (2): 311-317    DOI: 10.1007/s11770-018-0686-5
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Two-phase pore-fluid distribution in fractured media: acoustic wave velocity vs saturation
Duan Xi1,2 and Liu Xiang-Jun1
1. Department of Geosciences, Southwest Petroleum University, Chengdu 610500, China.
2. Department of Science, Southwest Petroleum University, Chengdu 610500, China.
 Download: PDF (702 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract The acoustic wave velocity varies with fluid saturation and pore-fluid distribution. We use a P-wave source and the staggered grid finite-difference method, with second-order accuracy in time and eighth-order accuracy in space, to simulate the acoustic wave field in a fractured medium that is saturated with a two-phase pore fluid (gas & water). Further, we analyze the variation of acoustic wave velocity with saturation for different pore-fluid distribution modes. The numerical simulation method is simple and yields accurate results.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Key wordsAcoustic wave velocity   fractured reservoir   saturation   pore distribution     
Received: 2017-11-22;
Fund:

This research was supported by the National Natural Science Foundation of China (No. 51134004).

Cite this article:   
. Two-phase pore-fluid distribution in fractured media: acoustic wave velocity vs saturation[J]. APPLIED GEOPHYSICS, 2018, 15(2): 311-317.
 
[1] Berenger, J. P., 1994, A perfectly matched layer for absorption of electromagnetic waves: Journal of Computational Physics, 114(2), 185−200.
[2] Birch, F., 1961, The velocity of compressional waves in rocks to 10 kb: Journal of Geophysical Research, 66, 2199−2224.
[3] Cadoret, T., Mavko, G., and Zinszner, B., 1998, Fluid distribution effect on sonic attenuation in partially saturated limestones: Geophysics, 63(1), 154−160.
[4] Carcione, J. M., and Picotti, S., 2006, P-wave seismic attenuation by slow-wave diffusion: effects of inhomogeneous rock properties: Geophysics, 71(3), O1−O8.
[5] Chapman, M., Liu, E., and Li, X., 2006, The influence of fluid-sensitive dispersion and attenuation on AVO analysis: Geophysical Journal International, 167(1), 89−105.
[6] Collino, F., and Tsogka, C., 2001, Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media: Geophysics, 66(1), 294−307.
[7] Domenico, S. N., 1974, Effects of water saturation on seismic reflectivity of sand reservois encased in shale: Geophysics, 39(6), 759−769.
[8] Dong, L. G., Ma, Z. T., and Cao, J. Z., 2000, A study on stability of the staggered-grid high-order difference method of first-order elastic wave equation: Chinese Journal of Geophysics, 43(6), 856−864.
[9] Levander, A. R., 1988, Fourth-order finite-difference P-SV seismograms: Geophysics, 53(11), 1425−1436.
[10] Liu, X. F., Sun, J. M., and Wang, H. T., 2009, Numerical simulation of rock electrical properties based on digital cores: Applied Geophysics, 6(1), 1−7.
[11] Masson, Y. J., and Pride, S. R., 2007, Poroelastic finite difference modeling of seismic attenuation and dispersion due to mesoscopic-scale heterogeneity: Journal of Geophysical Research, 112, B03204.
[12] Müller, M. T., Gurevich, B., and Lebedev, M., 2010, Seismic wave attenuation and dispersion resulting from wave induced flow in porous rocks: a review: Geophysics, 75(5), 75A147−75A164.
[13] Picotti, S., Carcione, J. M., Rubino, J. G., et al., 2010, A viscoelastic representation of wave attenuation in porous media: Computers & Geosciences, 36(1), 44−53.
[14] Ricker, N., 1953, The form and laws of propagation of seismic wavelets: Geophysics, 18(1), 10−40.
[15] Rubino, J. G., Ravazzoli, C. L., and Santos, J. E., 2009, Equivalent viscoelastic solids for heterogeneous fluid-saturated porous rocks: Geophysics, 74(1), N1−N13.
[16] Spedding, P. L., and Spence, D. R., 1993, Flow regime in two-phase gas liquid flow: International Journal of Multiphase Flow, 19, 245−280.
[17] Shi, G., Shen, W. L., and Yang, D. Q., 2003, The relationship of wave velocities with saturation and fluid distribution in pore space: Chinese Journal of Geophysics, 46(1), 138−142.
[18] Toms, J., Müller, M. T., Ciz, R., et al., 2006, Comparative review of theoretical models for elastic wave attenuation and dispersion in partially saturated rocks: Soil Dynamics and Earthquake Engineering, 26(6/7), 548−565.
[19] Virieux, J., 1986, P-SV wave propagation in heterogeneous media: Velocity-stress finite difference method: Geophysics, 51(4), 889−901.
[20] White, J. E., 1975, Computed seismic speeds and attenuation in rocks with partial gas saturation: Geophysics, 40(2), 224−232.
[21] White, J. E., Mihailova, N., and Lyakhovitsky, F. M., 1975, Low-frequency seismic waves in fluid-saturated layered rocks: Journal of the Acoustical Society of America, 57(S1), S30.
[22] Yu, S. P., 1996, Wide-band Ricker wavelet: Oil Geophysical Prospecting (In Chinese), 31(5), 605−615.
[23] Zhao, A., Han, Y. F., Ren, Y. Y., et al., 2016, Ultrasonic method for measuring water holdup of low velocity and high-water-cut oil-water two-phase flow: Applied Geophysics, 13(1), 179−193.
[24] Zhu, W., and Shan, R., 2016, Transmitted ultrasonic wave simulation and precision analysis of 3D digital cores: Applied Geophysics, 13(2), 375−381.
[1] Ma Xiao-Yi, Wang Shang-Xu, Zhao Jian-Guo, Yin Han-Jun, and Zhao Li-Ming. Velocity dispersion and fluid substitution in sandstone under partially saturated conditions[J]. APPLIED GEOPHYSICS, 2018, 15(2): 188-196.
[2] . Seismic prediction method of multiscale fractured reservoir[J]. APPLIED GEOPHYSICS, 2018, 15(2): 240-252.
[3] Guo Gui-Hong, Yan Jian-Ping, Zhang Zhi, José Badal, Cheng Jian-Wu, Shi Shuang-Hu, and Ma Ya-Wei. Numerical analysis of seismic wave propagation in fluid-saturated porous multifractured media[J]. APPLIED GEOPHYSICS, 2018, 15(2): 311-317.
[4] Su Ben-Yu and Yue Jian-Hua. Research of the electrical anisotropic characteristics of water-conducting fractured zones in coal seams[J]. APPLIED GEOPHYSICS, 2017, 14(2): 216-224.
[5] Song Lian-Teng, Liu Zhong-Hua, Zhou Can-Can, Yu Jun, Xiu Li-Jun, Sun Zhong-Chun, Zhang Hai-Tao. Analysis of elastic anisotropy of tight sandstone and the influential factors[J]. APPLIED GEOPHYSICS, 2017, 14(1): 10-20.
[6] He Yi-Yuan, Hu Tian-Yue, He Chuan, Tan Yu-Yang. P-wave attenuation anisotropy in TI media and its application in fracture parameters inversion[J]. APPLIED GEOPHYSICS, 2016, 13(4): 649-657.
[7] Ma Jin-Feng, Li Lin, Wang Hao-Fan, Tan Ming-You, Cui Shi-Ling, Zhang Yun-Yin, Qu Zhi-Peng, Jia Ling-Yun, Zhang Shu-Hai. Geophysical monitoring technology for CO2 sequestration[J]. APPLIED GEOPHYSICS, 2016, 13(2): 288-306.
[8] Guo Zhi-Qi, Liu Cai, Liu Xi-Wu, Dong Ning, and Liu Yu-Wei. Research on anisotropy of shale oil reservoir based on rock physics model[J]. APPLIED GEOPHYSICS, 2016, 13(2): 382-392.
[9] Chen Shuang-Quan, Zeng Lian-Bo, Huang Ping, Sun Shao-Han, Zhang Wan-Lu, Li Xiang-Yang. The application study on the multi-scales integrated prediction method to fractured reservoir description[J]. APPLIED GEOPHYSICS, 2016, 13(1): 80-92.
[10] Cao Cheng-Hao, Zhang Hong-Bing, Pan Yi-Xin, and Teng Xin-Bao. Relationship between the transition frequency of local fluid flow and the peak frequency of attenuation[J]. APPLIED GEOPHYSICS, 2016, 13(1): 156-165.
[11] An Yong. Fracture prediction using prestack Q calculation and attenuation anisotropy[J]. APPLIED GEOPHYSICS, 2015, 12(3): 432-440.
[12] Zhang Ru-Wei, Li Hong-Qi, Zhang Bao-Jin, Huang Han-Dong, Wen Peng-Fei. Detection of gas hydrate sediments using prestack seismic AVA inversion[J]. APPLIED GEOPHYSICS, 2015, 12(3): 453-464.
[13] LIU Cai, LI Bo-南, ZHAO Xu, LIU Yang, LU Qi. Fluid identification based on frequency-dependent AVO attribute inversion in multi-scale fracture media[J]. APPLIED GEOPHYSICS, 2014, 11(4): 384-394.
[14] SUN Wen-Jie, LI Ning, WU Hong-Liang, WANG Ke-Wen, ZHANG Gong. Establishment and application of logging saturation interpretation equation in vuggy reservoirs[J]. APPLIED GEOPHYSICS, 2014, 11(3): 257-268.
[15] DOU Xi-Ying, HAN Li-Guo, WANG 恩Li, DONG Xue-Hua, YANG Qing, YAN Gao-Han. A fracture enhancement method based on the histogram equalization of eigenstructure-based coherence[J]. APPLIED GEOPHYSICS, 2014, 11(2): 179-185.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn