Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2018, Vol. 15 Issue (2): 318-331    DOI: 10.1007/s11770-018-0684-7
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Transdimensional Bayesian inversion of time-domain airborne EM data
Gao Zong-Hui1, Yin Chang-Chun1, Qi Yan-Fu2, Zhang Bo1, Ren Xiu-Yan1, and Lu Yong-Chao1
1. College of Geo-Exploration Sciences and Technology, Jilin University, Changchun 130026, China.
2. School of Geology and Survey Enginneering, Changan University, Xi’an 710054, China.
 Download: PDF (1168 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract To reduce the dependence of EM inversion on the choice of initial model and to obtain the global minimum, we apply transdimensional Bayesian inversion to time-domain airborne electromagnetic data. The transdimensional Bayesian inversion uses the Monte Carlo method to search the model space and yields models that simultaneously satisfy the acceptance probability and data fitting requirements. Finally, we obtain the probability distribution and uncertainty of the model parameters as well as the maximum probability. Because it is difficult to know the height of the transmitting source during flight, we consider a fixed and a variable flight height. Furthermore, we introduce weights into the prior probability density function of the resistivity and adjust the constraint strength in the inversion model by changing the weighing coefficients. This effectively solves the problem of unsatisfactory inversion results in the middle high-resistivity layer. We validate the proposed method by inverting synthetic data with 3% Gaussian noise and field survey data.
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
Articles by authors
Key wordsTime-domain airborne EM   Bayesian inversion   weighing   deconvolution     
Received: 2017-11-07;

This paper was financially supported by the Key National Research Project of China (Nos. 2017YFC0601900 and 2016YFC0303100), and the Key Program of National Natural Science Foundation of China (No. 41530320) and Surface Project (No. 41774125).

Cite this article:   
. Transdimensional Bayesian inversion of time-domain airborne EM data[J]. APPLIED GEOPHYSICS, 2018, 15(2): 318-331.
[1] Agostinetti, N. P., and Malinverno, A., 2010, Receiver function inversion by trans-dimensional Monte Carlo sampling: Geophysical Journal International, 181(2), 858−872.
[2] Bodin, T., and Sambridge, M., 2009, Seismic tomography with the reversible jump algorithm: Geophysical Journal International, 178(3), 1411−1436.
[3] Brodie, R. C., and Sambridge, M., 2012, Transdimensional Monte Carlo Inversion of AEM Data: 22th International Geophysical Conference and Exhibition, Brisbane, Australia, 2629.
[4] Carrigy, M. A., and Kramers, J. W., 1973, Guide to the Athabasca oil sands area, Alberta Research Council Press, Edmonton.
[5] Chen, T. Y., Hodges, G., and Miles, P., 2015, MULTIPULSE-High resolution and high power in one TDEM system: Exploration Geophysics, 46, 49−57.
[6] Chunduru, R. K., Sen, M. K., and Stoffa, P. L., 1996, 2-D resistivity inversion using spline parameterization and simulated annealing: Geophysics, 62(1), 151−161.
[7] Green, P. J., 1995, Reversible jump Markov chain Monte Carlo computation and Bayesian model determination: Biometrika, 82(4), 711−732.
[8] Guo, R. W., Dosso, S. E., Liu, J. X., et al., 2011, Non-linearity in Bayesian 1-D magnetotelluric inversion: Geophysical Journal International, 185(2), 663−675.
[9] Hawkins, R., Brodie, R. C., and Sambridge, M., 2017, Trans-dimensional Bayesian inversion of airborne electromagnetic data for 2D conductivity profiles: Exploration Geophysics, 49(3), 332−343.
[10] Liu, W. J., Liu, J. X., Guo, R. W., et al., 2011, Correlated data errors on 1-D magnetotelluric (MT) Bayesian inversion: 27th Chinese Geophysical Society, 242.
[11] Liu, Y. H., and Yin, C. C., 2016, 3D inversion for multipulse airborne transient electromagnetic data: Geophysics, 81(6), E401−E408.
[12] Malinverno, A., 2002, A Bayesian criterion for simplicity in inverse problem parametrization: Geophysical Journal International, 140(2), 267−285.
[13] Malinverno, A., 2002, Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem: Geophysical Journal International, 151(3), 675−688.
[14] Minsley, B. J., 2011, A trans-dimensional Bayesian Markov chain Monte Carlo algorithm for model assessment using frequency-domain electromagnetic data: Geophysical Journal International, 187(1), 252−272.
[15] Mitsuhata, Y., Uchida, T., and Amano, H., 2002, 2.5-D inversion of frequency-domain electromagnetic data generated by a grounded-wire source: Geophysics, 67(6), 1753−1768.
[16] Nabighian, N. M., 1988, Electromagnetic Methods in Applied Geophysics-Theory: Society of Exploration Geophysicists Press.
[17] Ray, A., and Key, K., 2012, Bayesian inversion of marine CSEM data with a trans-dimensional self parametrizing algorithm: Geophysical Journal International, 191(3), 1135−1151.
[18] Ray, A., Key, K., Bodin, T., et al., 2014, Bayesian inversion of Marine CSEM data from the Scarborough gas field using a trans-dimensional 2-D parametrization: Geophysical Journal International, 199(3), 1847−1860.
[19] Shi, X. D., Liu, J. X., Guo, R. W., et al., 2012, Unbiased 1D magnetotelluric Bayesian inversion: Computing Techniques for Geophysical and Geochemical Exploration, 34(4), 371−379.
[20] Shi, X. M., Wang, J. Y., Zhang. S. Y., et al., 2000, Multiscale genetic algorithm and its application in magnetotelluric sounding data inversion: Chinese Journal Geophysics (in Chinese), 43(1), 122−130.
[21] Steuer, A., Siemon, B., and Auken, E., 2009, A comparison of helicopter-borne electromagnetics in frequency-and time-domain at the Cuxhaven valley in Northern Germany: Journal of Applied Geophysics, 67(3), 194−205.
[22] Stolz, E. M., and Macnae, J., 1998, Evaluating EM waveforms by singular value decomposition of exponential basis functions: Geophysics, 63(1), 64−74.
[23] Traninorguitton, W., and Hoversten, G. M., 2011, Stochastic inversion for electromagnetic geophysics: Practical challenges and improving convergence efficiency: Geophysics, 76(6), F373−F386.
[24] Wang, H., Jiang, H., Wang, L., et al., 2015, Magnetotelluric inversion using artificial neural network: Journal of Central South University (Science and Technology), 46(5), 1707−1714.
[25] Wang, Y. R., Wang, L. Q., Yin, D. W., et al., 2014, Airborne electromagnetic data de-convolution based on singular value decomposition of the tau domain: Measurement and Control Technology, 33(1), 47−50.
[26] Yin, C. C., and Hodges, G., 2007, Simulated annealing for airborne EM inversion: Geophysics, 72(4), F189−F196.
[27] Yin, C. C., Huang, Q., and Ben, F., 2013, The full-time electromagnetic modeling for time-domain airborne electromagnetic systems: Chinese Journal Geophysics (in Chinese), 56(09), 3153−3162.
[28] Yin, C. C., Qin, Y. F., Liu, Y. H., and Cai, J., 2014, Trans-dimensional Bayesian inversion of frequency-domain airborne EM data: Chinese Journal Geophysics (in Chinese), 57(09), 2971−2980.
[29] Yin, C. C., Qiu, C. K., Liu, Y. H., et al., 2016, Weighted laterally-constrained inversion of time-domain airborne electromagnetic data: Journal of Jilin university (Earth Science Edition), 46(1), 254−261.
[30] Zhu, K. G., Ma, M. Y., Che, H. W., et al., 2012, PC-based artificial neural network inversion for airborne time-domain electromagnetic data: Applied Geophysics, 9(1), 1−8.
[1] Huang Wei, Ben Fang, Yin Chang-Chun, Meng Qing-Min, Li Wen-Jie, Liao Gui-Xiang, Wu Shan, Xi Yong-Zai. Three-dimensional arbitrarily anisotropic modeling for time-domain airborne electromagnetic surveys[J]. APPLIED GEOPHYSICS, 2017, 14(3): 431-440.
[2] Wang De-Ying, Huang Jian-Ping, Kong Xue, Li Zhen-Chun, Wang Jiao. Improving the resolution of seismic traces based on the secondary time–frequency spectrum[J]. APPLIED GEOPHYSICS, 2017, 14(2): 236-246.
[3] Fang Yuan, Zhang Feng-Qi, Wang Yan-Chun. Generalized linear joint PP–PS inversion based on two constraints[J]. APPLIED GEOPHYSICS, 2016, 13(1): 103-115.
[4] SUN Xue-Kai, SUN Zan-Dong, XIE Hui-Wen. Nonstationary sparsity-constrained seismic deconvolution[J]. APPLIED GEOPHYSICS, 2014, 11(4): 459-467.
[5] GUO Can-Can, XIONG Sheng-Qing, XUE Dian-Jun, WANG Lin-Fei. Improved Euler method for the interpretation of potential data based on the ratio of the vertical first derivative to analytic signal[J]. APPLIED GEOPHYSICS, 2014, 11(3): 331-339.
[6] ZHANG Jian-Guo, WU Xin, QI You-Zheng, HUANG Ling, FANG Guang-You. Research on 3D marine electromagnetic interferometry with synthetic sources for suppressing the airwave interference
[J]. APPLIED GEOPHYSICS, 2013, 10(4): 373-383.
[7] LI Fang, WANG Shou-Dong, CHEN Xiao-Hong, LIU Guo-Chang, ZHENG Qiang. Prestack nonstationary deconvolution based on variable-step sampling in the radial trace domain[J]. APPLIED GEOPHYSICS, 2013, 10(4): 423-432.
[8] LI Guo-Fa, QIN De-Hai, PENG Geng-Xin, YUE Ying, DI Tong-Li. Experimental analysis and application of sparsity constrained deconvolution[J]. APPLIED GEOPHYSICS, 2013, 10(2): 191-200.
[9] ZHU Kai-Guang, MA Ming-Yao, CHE Hong-Wei, YANG 二Wei, JI Yan-Ju, YU Sheng-Bao, LIN Jun. PC-based artifi cial neural network inversion for airborne time-domain electromagnetic data*[J]. APPLIED GEOPHYSICS, 2012, 9(1): 1-8.
[10] LIU Zhi-Peng, CHEN Xiao-Hong, LI Jing-Ye. Noncausal spatial prediction filtering based on an ARMA model[J]. APPLIED GEOPHYSICS, 2009, 6(2): 122-128.
Support by Beijing Magtech